Synthesis of Bibenzyl Cannabinoids, Hybrids of Two Biogenetic Series Found in Cannabis sativa

Leslie W. Crombie, W. Mary L. Crombie, and David F. Firth
Department of Chemistry, The University of Nottingham, Nottingham, NG7 2RD

Abstract

Syntheses of a series of compounds which merge a m-dihydroxybibenzyl with a terpenoid structure, giving a series of hybrid cannabinoids in which products of two major biogenetic routes of Cannabis are united, are described. The compounds made are the bibenzyl/o- and p-cannabigerols (19) and (18)/oand p-cannabidiols (21) and (20),/ Δ^{1}-THC (22), $/ \Delta^{6}-\mathrm{THC}(23), / o$ - and p-cannabichromenes (25) and (24), o - and p-cannabicyclols (28) and (27) and/cannabicitran (26). Chromatographic and spectral data are listed in order to facilitate search for such 'crossed' types since only the bibenzyl cannabigerols and a chromene have as yet been found in natural sources.

The bibenzyl/p-cannabigerol (18) has been reported in Helichrysum umbraculigerum (Compositae) and the liverwort Radula variabilis. Our synthetic work confirms the former observation, but the liverwort compound appears to be its o-isomer.

The so-called cannabinoid class of natural products found in Cannabis sativa is generally considered to be a biogenetically related group, though actual experimental information is sparse. ${ }^{1}$ Scheme 1 shows the core of the relationships, dealing

(1)

(4)

(5)
(6)
a. $R=H$
b; $\mathrm{R}=\mathrm{CO}_{2} \mathrm{H}$
Scheme 1. Biogenic connections for the cannabinoids
only with major structural types. Good laboratory analogies are available, though in the plant the chemistry appears to take place on carboxylated forms ${ }^{2}$ under much milder conditions. A second important group of related metabolites from C. sativa has lately come to light, ${ }^{3}$ and, omitting less significant members, the main biogenetic relationships are in Scheme 2. This group originates from m-hydroxylated bibenzyls and includes a spirodienone and its reduction products, and dihydrophenanthrenes. Two flavonoids, canniflavone-1 and -2 (13a) and (13b)* also occur in the plant and have some biogenetic connections with the bibenzyl group. ${ }^{3}$ Early processes in the biogenesis of all three classes of natural product involve tris-malonate acylation and decarboxylations, using either hexanoic acid or p hydroxycinnamic acid as starters. Condensation is followed by oxidation, methylation etc. and, importantly for the present work, terpenylation (Scheme 3).

This paper presents the synthetic part of an investigation designed to find whether the plant terpenylation systems which are effective for olivetol are also effective in plants on other resorcinol types such as bibenzyls. There is some circumstantial evidence that this is so. Thus Bohlmann and Hoffmann ${ }^{5}$ report that the S. African plant Helichrysum umbraculigerum (Compositae) contains cannabigerol (1a) and its acid (1b) alongside the geranylated bibenzyl (18) and its acid. Other members of the group (1)-(6) of Scheme 1 were not reported and presumably, although possessing the necessary geranylating enzyme, the converting enzymes for modification of the geranyl unit were not present. Cannabis contains enzymic equipment both for geranylation of resorcinols and the terpenic modification steps of Scheme 1: it also contains bibenzyls having a resorcinol type ring. It has therefore become of interest to see if Cannabis (or other plants) contain 'crossed' bibenzyl/cannabinoids which have hitherto been overlooked.

Such searches among the many natural substances a plant contains (around 500 natural products have been recognised in Cannabis $)^{6}$ would be aided by synthetic specimens, or at least close synthetic analogues of the natural product. Since it is not possible to predict what other substitutions the bibenzyl might have in Nature, we have chosen the simple case (17) and have grafted on to this the set of terpenic modifications shown in Scheme 1. In view of the pharmacological interest of cannabi-

[^0]

Scheme 2. Biogenetic connections for the Cannabis bibenzyl group

(13)
$a ; R=3 \sim 1$
b; \mathbf{R}

with separation and purification using C_{18}-reversed phase h.p.l.c. gave the two geranylated bibenzyls: bibenzyl/p-cannabigerol hybrid (18) ($\mathrm{BB} / \mathrm{pCBG}$) and bibenzyl/o-cannabigerol hybrid (19) (BB/oCBG). Each could be obtained in 15% yield. Each compound has meta-related hydrogens in the a-ring but the two isomers are readily distinguished since, because of the symmetry of (18), the $\mathrm{C}-3^{\prime}$ and -5^{\prime} signals in the carbon spectrum (Table 2) resonate at the same field: the same applies to C-2' and -6^{\prime}. Isolation of (18) from natural sources has been claimed by two groups. Asakawa and colleagues ${ }^{9}$ report its occurrence in the liverwort Radula variabilis, and as mentioned above Bohlmann found it in H. umbraculigerum. ${ }^{5}$ Close comparison of the ${ }^{1} \mathrm{H}$ n.m.r. data recorded by these two groups

Scheme 3. Connections at the polyketide level
noids, the biological activities of the new set of compounds are also of interest.
Supplies of 3,5-dihydroxybibenzyl (17) were made in 40% overall yield by the Birch reduction method ${ }^{7,8}$ of Scheme 4. 3,5Dimethoxybenzoic acid was treated with sodium-liquid ammonia at $-70^{\circ} \mathrm{C}$ and the bis-anion (14) was then alkylated with phenethyl bromide to give crystalline compound (15) (74%). Decarboxylative dehydrogenation with lead tetraacetate in the presence of copper acetate led to the dimethyl ether (16) (78%) which was readily demethylated to give (17) using boron tribromide in dichloromethane at $-78^{\circ} \mathrm{C}$ rising to $20^{\circ} \mathrm{C}(71 \%)$.
Geranylation of 3,5-dihydroxybibenzyl using geraniol under acid conditions [toluene- p-sulphonic acid (PTSA) in benzene]
indicates small but significant discrepancies. Thus Asakawa reports ${ }^{9}$ the meta-oriented hydrogens of ring A as resonating at $\delta 6.28$ as a 'broad singlet' whereas Bohlmann reports 'singlet'. The latter agrees with our data for (18) (Table 1) but in (19) the hydrogens have a small coupling ($J 2 \mathrm{~Hz}$). Our value for the benzylic 1 -methylene of (18) is $3.40 \mathrm{~d}, J 7 \mathrm{~Hz}$: Bohlmann ${ }^{5}$ gives 3.40 broad d, Asakawa ${ }^{9} 3.27 \mathrm{~d}, J 8 \mathrm{~Hz}$. The latter agrees better with our data for isomer (19) ($3.29 \mathrm{~d}, J 7 \mathrm{~Hz}$). Most telling are the $1^{\prime \prime}$-and 2 "-signals which in (18) resonate as two 2 H multiplets $(2.88,2.76)$ whereas in (19) they form a singlet (2.82). Bohlman ${ }^{5}$ records $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$ signals, not first order ${ }^{1}, 2.84$, whilst Asakawa ${ }^{9}$ gives 2.80, singlet. Whilst Asakawa's data do not agree with ours for the p-compound (18), they do agree very well with those for our o-compound (19). We, therefore, believe that

Scheme 4. Route to 3,5-dihydroxybibenzyl

(18)

(19)

Bohlmann's natural material was authentic $\mathrm{BB} / \mathrm{pCBG}$ whilst Asakawa's was BB/oCBG*.

Terpenylation of bibenzyl (17) with ($1 S, 4 R$)-(+)-trans-p-mentha-2,8-dien-1-ol ${ }^{10}$ using PTSA catalyst at room temperature allowed isolation of the $(3 R, 4 R)$-bibenzyl $/ p$-cannabidiol hybrid (20) (BB/pCBD) in 27% yield together with its orthoisomer (21) (BB/oCBD) (13%). In the case of the cannabidiols themselves it is known that the p-compound shows evidence of slow exchange involving rotation of the p-methadienyl residue ${ }^{11}$ which is not evident in the o-isomer. As might be expected compounds (20) and (21) show analogous behaviour. In the proton spectrum of (20) the hydrogens at 3^{\prime} and 5^{\prime} have very broadened signals and the carbon signals at the same positions are likewise much broadened and diminished in height. The more hindered ortho isomer does not display such slow exchange characteristics. Fast Blue Salt B (FBSB) colours and chromatographic retention orders follow those for the cannabidiols and this type of relationship was found throughout the hybrid series. A useful ${ }^{13} \mathrm{C}$ n.m.r. criterion for orienting compounds in the bibenzyl series has also emerged in the present work (Table 2). In the p-series, e.g. (18) and (20), the resonances of the $\mathrm{C}-1^{\prime \prime}$ and $-2^{\prime \prime}$ benzylic methylenes of the bridge are nearly coincident at $\delta 37.5$. In the ortho isomers (19) and (21)

[^1]

(20)

(21)
one methylene occurs at about the same position but the other is shifted upfield by shielding of some $2-3$ p.p.m. This applies in the bibenzyl/cannabichromene and cannabicyclol series as well as the cannabidiols and cannabigerols.

Under more vigorous conditions ${ }^{10}$ (refluxing acid solution in benzene) $o-\longrightarrow p$-cannabidiol conversion occurred as expected (the formation reaction is reversible, and the p - is thermodynamically the more stable): this was accompanied by cyclisation and isomerisation of the Δ^{1}-double bond of the bibenzyl/ Δ^{1}-THC hybrid (22) to the Δ^{6}-position. Thus the product isolated under these conditions was the ($3 R, 4 R$)bibenzyl $/ \Delta^{6}-\mathrm{THC}$ hybrid (23) (BB/ Δ^{6} THC) ($44^{\%} \%$). By careful adjustment of reaction conditions it was possible to isolate the acid-unstable ($3 R, 4 R$)-bibenzyl/ Δ^{1}-THC hybrid (22) $\left(\mathrm{BB} / \Delta^{1} \mathrm{THC}\right)$ intermediate though in low yield-ca. 10%. Spectral data in the Tables and Experimental verify the structures proposed.

Base-catalysed chromenylation of 3,5-dihydroxybibenzyl by heating with citral ${ }^{12}$ gave (\pm)-bibenzyl $/ p$-cannabichromene (24) and $/ 0$-cannabichromene (25) hybrids ($\mathrm{BB} / \mathrm{pCBC}$ and $/ \mathrm{oCBC}$) along with lesser amounts of (\pm)-bibenzyl/cannabicitran (BB/Cit) (26) and the cyclols (27) and (28). Pyridine at $160^{\circ} \mathrm{C}$ gave a predominance of o - and p-chromenes (25) and (24) in 52% g.l.c. yield (see Experimental section). Investigated by g.l.c., 2,6 -di-t-butylpyridine gave a higher proportion of cyclols (27) and (28) (12%) and citran (26) (17%), together with 47% of chromenes. 2,4,6-Trimethylpyridine also gave increased amounts of cyclols and citran along with 35% of chromenes. Employing 2,6-di-t-butylpyridine at $160^{\circ} \mathrm{C}$ and isolating the products by h.p.l.c., using normal and then reversed phase methods, BB/pCBC (24) was isolated in 15% yield as well as the o-isomer (9%) and some of BB/Cit. Despite the final poor yields after rigorous purification, this chromenylation procedure is quick and direct.

The two (\pm)-bibenzyl/cannabicyclols, p-(27) and o-(28) were prepared by irradiating the chromenes (24) and (25) in acetone solution, ${ }^{12.13}$ Both cyclols were obtained crystalline, a reflection of their compact and rigid structures, and spectral data are recorded in the Tables.

3,4'-Dihydroxy-5-methoxybibenzyl (7) occurs naturally in Cannabis ${ }^{3,14}$ and terpenylation with ($1 S, 4 R$)-(+)-trans-p-mentha-2,8-dien-1-ol was attempted. Only one product was isolated pure and this proved to be the o-terpenylation product (29). N.m.r. data showed that substitution had taken place on ring A. The placing of the methoxy group at C-6 rather than C-2 follows from a comparison of the observed ${ }^{13} \mathrm{C}$ signals of ring A with those calculated (see Experimental section) for the two o -
Table 2．${ }^{13} \mathrm{C}$ N．m．r．data for bibenzyl／cannabinoid hybrids ${ }^{a}$

今

犬゙

它

 ${ }^{a}$ Close assignments may be interchanged．

(22)

(25)

(23)

(26)
(28)

(29)
cannabidiol structures: on this basis, structure (29) is proposed.
With the objective of making the hybrid data set (18)-(28) complete, and the availability of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ n.m.r. data (Tables 1 and 2) and chromatographic characteristics (Table 3) to hand, search for these 'crossed' types in Cannabis and other plants will be facilitated. It is hoped to describe such searches, along with g.l.c./m.s. data, in a later paper.

Experimental

Fast Blue Salt B Spray was freshly made up in dilute sodium hydroxide solution before use. Unless stated otherwise, n.m.r. data are reported in CDCl_{3} solutions.

3,5-Dimethoxybibenzyl ($\mathbf{1 6}$).-Sodium (1.61 g) was added to a stirred solution of 3,5 -dimethoxybenzoic acid (5.07 g) in liquid ammonia (100 ml) under nitrogen at $-70^{\circ} \mathrm{C}$. After 2.5 h the blue colour had disappeared and was replaced by a yellow precipitate: phenethyl bromide (10.38 g) was added with stirring and the mixture was allowed to attain room temperature overnight. The sodium salt was dissolved in water (300 ml), washed with ethyl acetate $(3 \times 50 \mathrm{ml})$, and then acidified to pH

4 (meter) with 2 M -hydrochloric acid. The creamy precipitate was extracted into ethyl acetate. Drying and evaporation under reduced pressure gave 3,5-dimethoxy-1-phenethylcyclohexa-2,5-dienecarboxylic acid (15) ($5.92 \mathrm{~g}, 74 \%$), m.p. $81-82^{\circ} \mathrm{C}, \mathrm{m} / \mathrm{z}$ 288.1350 and $244.1464\left(M^{+}-\mathrm{CO}_{2}\right)\left(\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{4}\right.$ requires M, 288.1361), $v_{\text {max. }} .\left(\mathrm{CHCl}_{3}\right) 1700$ and $1615 \mathrm{~cm}^{-1} ; \delta\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right)$ $10.3\left(1 \mathrm{H}\right.$, br s, $\mathrm{CO}_{2} \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exchg.), $7.22(3 \mathrm{H}, \mathrm{d}, J 2.0 \mathrm{~Hz}, \mathrm{ArH})$, $6.73(2 \mathrm{H}, \mathrm{t}, J 2.0 \mathrm{~Hz}, \mathrm{ArH}), 4.88(2 \mathrm{H}, \mathrm{m},=\mathrm{CH}), 3.65(6 \mathrm{H}, \mathrm{s}$, $2 \times \mathrm{OMe}$), and 2.75 and 2.69 (each $2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{CH}_{2}$).

The above dihydro compound (5.92 g) with cupric acetate $(0.1 \mathrm{~g})$ was stirred in dry benzene $(100 \mathrm{ml})$ and lead tetra-acetate $(9.11 \mathrm{~g})$ was added: CO_{2} was evolved and the mixture was stirred overnight. The solution was decanted from gummy material, washed with 2 m hydrochloric acid and water, dried, and evaporated. After chromatography on silica (eluting with chloroform) the 3,5 -dimethoxybibenzyl (16) ${ }^{15}$ was distilled $\left(3.89 \mathrm{~g}, 78 \%\right.$), b.p. $86-88^{\circ} \mathrm{C} / 0.1 \mathrm{mmHg}$ (Found: C, $79.0 ; \mathrm{H}$, $7.65 \% ; M^{+}, 242.1293$. Calc. for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{2}: \mathrm{C}, 79.3, \mathrm{H}, 7.5 \% ; M$, 242.1307).

3,5-Dihydroxybibenzyl (17).-Boron tribromide (20.11 g) in dry dichloromethane (75 ml) was added to a stirred solution of the above dimethoxy compound (3.89 g) in dichloromethane (75 ml) under nitrogen at $-70^{\circ} \mathrm{C}$. The mixture was allowed to attain room temperature and then stirred for 2 h . Water (50 ml) was added carefully and the product was extracted with ether. The ether extracts were themselves extracted with 2 m aqueous sodium hydroxide. The alkaline extractives were acidified (2 m hydrochloric acid) and re-extracted into ether. Evaporation and chromatography on silica (eluant 2% methanol in chloroform), followed by distillation, b.p. $167-169^{\circ} \mathrm{C} / 1 \mathrm{mmHg}$ gave $3,5-$ dihydroxybibenzyl $(2.44 \mathrm{~g}, 71 \%)^{15}$ (Found: C, 78.8 ; H, 6.8%; M^{+}, 214.0983. Calc. for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{2}: \mathrm{C}, 78.5 ; \mathrm{H}, 6.6 \% ; M$,

Table 3. Chromatographic data for bibenzyl/cannabinoid hybrids

		Visualisation	R_{F} for t.l.c. systems		$R_{t}(\min)$ for h.p.l.c. and g.l.c.	
		Fast-Blue Salt-B Colour ${ }^{a}$	Ether-hexane ($1: 3$) (silica) ${ }^{b}$	$\begin{aligned} & \text { Chloroform } \\ & \text { (silica) }^{b} \end{aligned}$	H.p.l.c. (\%) Methanol in water (C_{18} reversed phase) ${ }^{c}$	G.l.c. on OV 17 (sample silylated) ${ }^{d}$
$\mathrm{BB} / p \mathrm{CBG}$	(18)	Orange-red	0.40	0.52	2.8 (85\%)	45.0
$\mathrm{BB} / o \mathrm{CBG}$	(19)	Purple	0.10	0.14	3.6 (85\%)	41.6
$\mathrm{BB} / p \mathrm{CBD}$	(20)	Orange-red	0.47	0.73	3.8 (85\%)	21.5
BB/oCBD	(21)	Orange-pink	0.18	0.25	5.9 (85\%)	26.5
$\mathrm{BB} / \Delta^{1} \mathrm{THC}$	(22)	Purple	0.45	0.66	10.1 (85\%)	48.6
BB / Δ^{6} THC	(23)	Crimson	0.58	0.70	9.3 (85\%)	47.0
$\mathrm{BB} / p \mathrm{CBC}$	(24)	Purple	0.45	0.50	5.8 (85\%)	45.0
$\mathrm{BB} / o \mathrm{CBC}$	(25)	Blue-purple	0.32	0.20	4.4 (85\%)	31.5
BB/Cit	(26)	e	0.61	0.75	5.7 (95\%)	55.0
BB/pCCY	(27)	Pink	0.55	0.66	6.2 (85\%)	26.9
BB/oCCY	(28)	Brown-purple	0.27	0.20	5.5 (90\%)	24.2

${ }^{a}$ FBSB in 5% aqueous $\mathrm{KOH} .{ }^{b}$ Thickness 0.25 mm : fluorescent indicator ($\lambda_{\text {max. }} 254 \mathrm{~mm}$) present. ${ }^{c}$ Run on $8 \mathrm{~mm} 10 \mu \mathrm{C}_{18}$-reversed phase Rad. Pak with solvent flow $2.0 \mathrm{ml} \mathrm{min}^{-1} .{ }^{d}$ Samples silylated with N, O-bistrimethylsilyltrifluoroacetamide and 1% trimethylchlorosilane at $60^{\circ} \mathrm{C}$ for 15 min . Column OV 17 open tube capillary $(50 \mathrm{M})$ at $220^{\circ} \mathrm{C}$, flow rate $5 \mathrm{ml} / \mathrm{min}$. Injection $\ngtr 0.5 \mu \mathrm{l}$. Standard 3,5-dihydroxybibenzyl ($R_{t} 6.2 \mathrm{~min}$). ${ }^{e}$ Detection u.v. or brown with iodine vapour.
214.0994); $\delta\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right) 8.09\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchg.), 7.28 $(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.31(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, and $2.84(4 \mathrm{H}, \mathrm{m}$, $\mathrm{ArCH} \mathrm{CH}_{2} \mathrm{Ar}$).
o- and p-Bibenzyl/Cannabigerol Hybrids (19) and (18).Geraniol ($277.5 \mathrm{mg}, 315 \mu \mathrm{l}$), was stirred at $20^{\circ} \mathrm{C}$ for 20 min with a solution of 3,5 -dihydroxybibenzyl (343.1 mg) and PTSA (144 mg) in dry benzene (10 ml). Aqueous sodium hydrogen carbonate was added and the mixture was worked up to afford a product which was chromatographed on a dry silica column [eluting with 100% light petroleum (b.p. $60-80^{\circ} \mathrm{C}$) $\longrightarrow 100 \%$ ether]. Fractions containing the p-compound and those containing the o-compound were united. \{Monitoring was by t.l.c. [silica, eluant light petroleum (b.p. $60-80^{\circ} \mathrm{C}$)-ether (2:1)] and visualisation was by Fast Blue Salt B Spray (the o-compound gave a purple colour and the p-a pink-purple) and g.l.c. (SCOT OV 17 column at $220^{\circ} \mathrm{C}$) $\}$. Both compounds were further purified by reverse-phase C_{18} h.p.l.c. eluting with methanol-water (85:15). The p-isomer (18) had $m / z 350.2228$ $\left(\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{2}\right.$ requires $\left.M, 350.2246\right)$: yield $86.1 \mathrm{mg}(15 \%)$, $\lambda_{\text {max }}(\mathrm{EtOH}) 267$ ($\varepsilon 1010$) and 280 nm (890). The o-isomer (19) had $m / z 350.2234$: yield $48.7 \mathrm{mg}(9 \%)$, $\lambda_{\text {max. }}$. (EtOH) $269 \mathrm{i}(1540)$ and 282 nm (2930).

A second experiment using bibenzyl (72.2 mg) and similar conditions gave the p-isomer (13% yield) and the o-isomer (15% yield).
(3R,4R)-o- and p-Bibenzyl/Cannabidiol Hybrids (21) and (20). - 3,5-Dihydroxybibenzyl (92.2 mg) and PTSA (79.3 mg) were dissolved in dry benzene $(10 \mathrm{ml})$ and $(1 S, 4 R)-p$ menthadienol $(100 \mu \mathrm{l})$ was added at $17^{\circ} \mathrm{C}$; the mixture was then stirred for 4 h . Aqueous sodium hydrogen carbonate was added and the organic layer was separated, washed, dried, and evaporated. The product was chromatographed on a dry silica column ($1.2 \times 7 \mathrm{~cm}$) eluting with light petroleum (b.p. $60-$ $80^{\circ} \mathrm{C}$)-ether ($1: 4$) in steps. Fractions containing the o compound and the p-compound were united [monitoring by t.l.c. as above p - (20) gives orange FBSB colour, o - (21) purple; and g.l.c. ($\mathrm{OV} 17 / 220^{\circ} \mathrm{C}$) after silylation by heating for 15 min at $60^{\circ} \mathrm{C}$ with BSTFA- 1% TMCS solution]. The yield of p compound (20) was 27%, and $o-(21) 13 \%$. The two samples were further purified by C_{18}-reversed phase h.p.l.c. as above. A second run, using bibenzyl (453 mg) gave, after reversed phase C_{18} h.p.l.c. purifications, $152 \mathrm{mg}(21 \%)$ of p-(20) and $63 \mathrm{mg}(9 \%)$ of o-(21). The p-isomer (20) had $m / z 348.2095\left(\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{2}\right.$
requires $M, 348.2089) ; \lambda_{\text {max. }}(\mathrm{EtOH}) 273(\varepsilon 1400)$ and 282 (1300) nm. The o-isomer (21) had $m / z 348.2079, \lambda_{\text {max. }}$. (EtOH) 267infl ($\varepsilon 1240$) and $283 \mathrm{~nm}(2590)$.
(3R,4R)-Bibenzyl/ Δ^{6}-THC Hybrid (23).-(1S,4R)-p-menthadienol ($90 \mu \mathrm{l}$), 3,5-dihydroxybibenzyl (83.3 mg), and dry PTSA $(49.7 \mathrm{mg})$ were refluxed together in dry benzene (5 ml) for 2.5 h . Sodium carbonate and water were added and the mixture was worked up to afford a product which was chromatographed on a dry silica column. It was applied to the column in light petroleum (b.p. $60-80^{\circ} \mathrm{C}$) containing 2 drops of ether and the column was developed with light petroleum-ether mixtures varying in proportions from $6: 1$ to $1: 1$. 22 Fractions were taken and examined by g.l.c. (after silylation) and t.l.c. (FBSB colours). Early fractions gave dull purple FBSB, and later ones purple colours, but the $\Delta^{6}-\mathrm{THC}$ hybrid was in fractions 6-8 giving a crimson colour; the yield was $58.9 \mathrm{mg}(43.5 \%)$. A second experiment using bibenzyl (592 mg) with purification by a dry column procedure similar to the above followed by preparative reversed phase C_{18}-h.p.l.c. (Prep Pak 500, elution methanolwater, $85 / 15$) gave the ($3 \mathrm{R}, 4 \mathrm{R}$)-bibenzyl/ $\Delta^{6}-T H C(247 \mathrm{mg}$, 26%) hybrid (Found: $M^{+}, 348.2094 . \mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{2}$ requires M, 348.2089); $\lambda_{\text {max. }}(\mathrm{EtOH}) 268 \mathrm{i}(\varepsilon 1000), 275(1160)$, and 281 nm (1220).
(3R,4R)-Bibenzyl/ Δ^{1}-THC Hybrid (22).-Bibenzyl (17) $(131.7 \mathrm{mg})$ and PTSA $(101.9 \mathrm{mg})$ in dry benzene $(10 \mathrm{ml})$ were equilibrated at $45^{\circ} \mathrm{C}$ and $(1 S, 4 R)$-p-menthadienol ($130 \mu \mathrm{l}$) was added; the mixture was then stirred for 2 h with t.l.c. monitoring (t.l.c., FBSB) at intervals. The reaction was stopped by addition of aqueous sodium carbonate when small amounts of $\Delta^{6}-\mathrm{THC}$ hybrid began to be formed. Work-up gave a product which when examined by g.l.c. (samples silanised) showed that almost all the bibenzyl had reacted, that p - and o-cannabidiol hybrids were present along with the Δ^{1} THC hybrid, but that little Δ^{6} THC hybrid had formed. Chromatography on a dry silica column eluting with light petroleum (b.p. $60-80^{\circ} \mathrm{C}$) ether concentrations varying from $10: 1$ to 100% ether gave 24 fractions. Fractions $8-10(52.8 \mathrm{mg})$ contained a mixture of Δ^{1} THC and p-cannabidiol hybrids along with a little $\Delta^{6}-$ THC hybrid. Fractions 19-22 contained o - cannabidiol hybrid.

Fractions $8-10$ were purified by reverse-phase C_{18} h.p.l.c. (eluting with methanol-water, $85: 15$) to give the p-cannabidiol hybrid ($14.0 \mathrm{mg}, 7 \%$) and (3R,4R)-bibenzyl/ $\Delta^{1}-$ THC hybrid (22)
($14.1 \mathrm{mg}, 7 \%$) (Found: $M^{+}, 348.2071 . \mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{2}$ requires M, 348.2089). A second experiment on about twice the above scale gave a yield of 9%.

The compound had $\lambda_{\text {max. }}$ (EtOH) 268infl. (1 390), 274 (1550), and $283 \mathrm{~nm}(1600)$.
(\pm)-Bibenzyl/o- and p-Cannibichromene Hybrids (25) and (24).-3,5-Dihydroxybibenzyl (304.4 mg) was heated with citral (300 mg) and freshly distilled 2,6-di-t-butylpyridine (294 mg) at $160^{\circ} \mathrm{C}$ for 5.5 h . The products were dissolved in ether and washed with 2 m hydrochloric acid and water, dried, and evaporated. Silica gel chromatography gave a series of fractions monitored by g.l.c. (after silylation, on $\mathrm{OV} 17 / 220^{\circ} \mathrm{C}$) and t.l.c. (FBSB and iodine colours). Four products were located in order of elution (1) bibenzyl/cannabicitran hybrid-no colour with FBSB but brown with iodine; (2) bibenzyl/cannabicyclol-FBSB pink red; (3) bibenzyl/p-cannabichromen-FBSB purple; (4) bibenzyl/ o-cannabichromen-FBSB blue-purple. Finally eluted was a little unchanged 3,5-dihydroxybibenzyl (FBSB purple). Fractions (1), (3), and (4) were further purified first by h.p.l.c. on μ Porasil (eluant 1.5% ether in light petroleum (b.p. $60-80^{\circ} \mathrm{C}$), then by C_{18}-reversed phase h.p.l.c. [eluant methanol-water (85:15)]. This gave bibenzyl/p-cannabichromene (24) $(75 \mathrm{mg}$, $15 \%), m / z 348.2061\left(\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{2}\right.$ requires M, 348.2089), $\lambda_{\text {max. }}(\mathrm{EtOH}) 280(\varepsilon 10240)$ and $289 \mathrm{~nm}(9670)$; bibenzyl/ocannabichromene ($\mathbf{2 5}$) ($37 \mathrm{mg}, 8 \%$), $m / z 348.2096$, $\lambda_{\text {max. }}(\mathrm{EtOH})$ 279 ($\varepsilon 6700$), 287 (6770), and 315 nm (4640); and bibenzyl/ cannabicitran (26) $(6.3 \mathrm{mg}), m / z$ 348.2106, $\lambda_{\text {max. }}$ (EtOH) 280 nm (1250).

3,5-Dihydroxybibenzyl (18.6 mg), citral (21.9 mg), and $2,4,6-$ trimethylpyridine (10.5 mg) were heated at $160^{\circ} \mathrm{C}$ for 5.5 h . The mixture was then silylated (BSTFA $+1 \%$ TMCS, $60^{\circ} \mathrm{C}$, 15 \min) and examined by g.l.c. (SCOT OV $17 / 220^{\circ} \mathrm{C}$, injection $250^{\circ} \mathrm{C}$). This gave the following proportions: recovered bibenzyl (17) $(31 \%$); BB/CCY's (27) and (28) 20%; BB/CBC's (24) and (25) 35%, BB/Cit (26) 14%.

Bibenzyl (17) (19.9 mg), citral (27.7 mg), and 2,6 -di-tbutylpyridine (17.8 mg) heated and analysed as above gave the following proportions: recovered (17) 24%; $\mathrm{BB} / \mathrm{CCY}$'s (27) and (28) 12%; BB/CBC's (24) and (25) 47%; BB/Cit (26) 17%.

Bibenzyl (17) (17.4 mg), citral (20.9 mg), and pyridine (6.5 mg) heated and analysed as above gave the following proportions: recovered (17) 40%; BB/CCY's (27) and (28) 5%; BB/CBC's (24) and (25) 52%, BB/Cit 3%.
(\pm)-Bibenzyl/ o - and p -Cannabicyclol Hybrids (28) and (27).-p-Chromene (24) $(42.5 \mathrm{mg})$ in dry acetone $(10 \mathrm{ml})$ was irradiated under nitrogen overnight (Hanovia $450 \mathrm{~W}, \mathrm{Hg}$ discharge lamp). Work-up and chromatography of the residue on silica (dry column), followed by reversed phase C_{18} h.p.l.c. [eluant methanol-water (85:15)] gave the p-cyclol (27) ($8 \mathrm{mg}, 18 \%$), m.p. $60-61^{\circ} \mathrm{C}, m / z 348.2103\left(\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{2}\right.$ requires $\left.M 348.2089\right)$; $\lambda_{\text {max. }}$. EtOH) 276 ($\varepsilon 1320$) and $280 \mathrm{~nm}(2200)$.

In a similar way the o-chromene (25) $(29.5 \mathrm{mg})$ gave the ocyclol (28) ($5 \mathrm{mg}, 7 \%$), m.p. $105-106^{\circ} \mathrm{C} ; \mathrm{m} / \mathrm{z} 348.2103$; $\lambda_{\text {max. }}(\mathrm{EtOH}), 280(\varepsilon 2150), 284$ (2630), and $291 \mathrm{~nm}(2390)$.
p-Hydroxybibenzyl/o-Cannabidiol Monomethyl Ether Hybrid (29).-3,4'-Dihydroxy-5-methoxybibenzyl (dihydrostilbene) (7) was prepared according to our earlier procedure. ${ }^{14}$ The
bibenzyl (30) (125 mg) was stirred with PTSA (106 mg) in dry benzene (10 ml) at $45^{\circ} \mathrm{C}$ and p-menthadienol ($120 \mu \mathrm{l}$) was added. Stirring was continued for 90 min . Addition of sodium hydrogen carbonate and work-up followed by chromatography of the residue on silica gel gave the p-hydroxybibenzyl hybrid (29) ($11 \mathrm{mg}, 6 \%$), $m / z 378.2208 .\left(\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{O}_{3}\right.$ requires M, 378.2195); $\lambda_{\text {max. }}$. $(\mathrm{EtOH}) 282 \mathrm{~nm}(\varepsilon 3670) ;{ }^{13} \mathrm{C}$ spectral data for ring a follows.
$\begin{array}{llllll}\mathrm{C}-1^{\prime} & \mathrm{C}-2^{\prime} & \mathrm{C}-3^{\prime} & \mathrm{C}-4^{\prime} & \mathrm{C}-5^{\prime} & \mathrm{C}-6^{\prime}\end{array}$
Calc. for 2-OH, 6-OMe (29) ${ }^{a}$ 101.5 $15156.8119 .9143 .2107 .2 \begin{array}{llllll}159.6\end{array}$ $\begin{array}{llllllllll}\text { Found } & 100.7 & 158.9 & 120.0 & 142.5 & 107.9 & 156.6\end{array}$ $\begin{array}{llllllllllll}\text { Calc. for } 2-\mathrm{OMe}, 6-\mathrm{OH}^{a} & 101.5 & 155.2 & 108.4 & 143.2 & 118.7 & 161.2\end{array}$
${ }^{a}$ Data from this paper.

Acknowledgements

One of us D. F. F. thanks the S.E.R.C. for a research studentship.

References

1 e.g. Y. Shoyama, H. Hirano, and I. Nishioka, Phytochemistry, 1984, 23, 1909. M. Kajima and M. Piraux, Phytochemistry, 1982, 21, 67; Y. Shoyama, M. Yagi, I. Nishioka, and T. Yamauchi, Phytochemistry, 1975, 14, 2189; R. Mechoulam, N. K. McCallum, and S. Burnstein, Chem. Rev., 1976, 76, 75; R. Mechoulam, 'Marijuana', Academic Press, London and New York, 1973.
2 L. Crombie, W. M. L. Crombie, R. Forbes, and A. Whitaker, J. Chem. Res., 1977, (S), 114; (M), 1301; L. Crombie and W. M. L. Crombie, Phytochemistry, 1977, 16, 1413.
3 L. Crombie and W. M. L. Crombie, J. Chem. Soc., Perkin Trans. 1, 1982, 1455; Tetrahedron Lett., 1978, 4711; L. Crombie, W. M. L. Crombie, and S. V. Jamieson, Tetrahedron Lett., 1980, 3607.
4 M. L. Barrett, A. M. Scutt, and F. J. Evans, Experientia, 1986, 42, 452.
5 F. Bohlmann and E. Hoffmann, Phytochemistry, 1979, 18, 1371. See also E. L. Ghisalberti, P. R. Jeffries, and D. MacAdam, Phytochemistry, 1981, 20, 1959.
6 C. E. Turner, M. A. Elsohly, and E. G. Boeren, Lloydia, 1980, 43, 205.
7 A. J. Birch and J. Slobbe, Tetrahedron Lett., 1976, 2079.
8 L. Crombie, W. M. L. Crombie, S. V. Jamieson, P. Tuchinda, and A. Whitaker, J. Chem. Soc., Perkin Trans. I, 1982, 1485.
9 Y. Asakawa, M. Toyota, and T. Takemoto, Phytochemistry, 1978, 17, 2005. See also Y. Asakawa, K. Takikawa, M. Toyota, and T. Takemoto, Phytochemistry, 1982, 21, 2481.
10 T. Petrzilka, W. Haefliger, C. Sikemeier, G. Ohloff, and A. Eschenmoser, Helv. Chim. Acta, 1967, 50, 719; T. Petrzilka, and C. Sikemeier, Helv. Chim. Acta, 1967, 50, 1416; 2111; T. Petrzilka, W. Haefliger and C. Sikemeier, Helv. Chim. Acta., 1969, 52, 2201.
11 V. V. Kane, A. R. Martin, C. Jaime, and E. Ossowa, Tetrahedron, 1984, 40, 2919; I. Tamir, R. Mechoulam, and A. Y. Meyer, J. Med. Chem., 1980, 23, 220; see also L. Crombie, W. M. L. Crombie, and D. F. Firth, J. Chem. Soc., Perkin Trans. 1, 1987, 1251.

12 L. Crombie and R. Ponsford, J. Chem. Soc. C, 1971, 796.
13 L. Crombie, R. Ponsford, A. Shani, B. Yagnitinsky, and R. Mechoulam, Tetrahedron Lett., 1968, 5771.
14 L. Crombie and S. V. Jamieson, J. Chem. Soc., Perkin Trans. 1, 1982, 1467.

15 L. A. Mitscher, Y. H. Park, A. Al-Shamma, P. B. Hudson, and T. Haas, Phytochemistry, 1981, $20,781$.

[^0]: * Unaware of our earlier work, these compounds have very recently been rediscovered and named canniffavins-A and -B. ${ }^{*}$

[^1]: * Professor Y. Asakawa (personal communication) has recently found both (19) and the corresponding chromene (25) in the liverwort Radula kojana: we thank him for this information.

